-
总做描述性统计 深入的数据分析到底咋办
所属栏目:[大数据] 日期:2022-08-23 热度:93
经常有同学抱怨:感觉平时做的都是描述性统计,同比、环比,深入的数据分析到底怎么做?今天系统地讲解一下。 举个简单的例子,让分析:为啥业绩下降了。很多同学的做法,就是拿本月和上月做对比,然后分产品、地区、分公司等维度做交叉。最后发现:A产品[详细]
-
为什么完善数据供应链是一种责任
所属栏目:[大数据] 日期:2022-08-23 热度:173
如今,企业拥有比以往任何时候都要多的数据,数据架构师、分析师和数据科学家在所有业务职能部门中变得越来越普遍。然而,随着企业招募经验丰富的分析师以利用数据做出更好的决策,他们往往无法改善数据供应链和由此产生的数据质量。如果没有可靠的数据供[详细]
-
2022大数据十大关键词 重磅公布
所属栏目:[大数据] 日期:2022-08-23 热度:169
大数据几大关键词是基于我们长期对于产业的研究观察,以及与一线专家的研讨交流完成。如图所示,本年度十大关键词涉及数据从计算机语言到成为生产要素的全生命周期,包括 【数据资源化】,即数据从计算机语言到成为可被人类识别的信息 【数据治理】,即将[详细]
-
数据指标 VS 标签体系 到底有啥区别 总算讲清楚了
所属栏目:[大数据] 日期:2022-08-23 热度:92
实际上,标签和指标一样,是数据分析的左膀右臂,两者同样重要。实际上,很多人分析不深入,就是因为缺少对标签的应用。今天系统的讲解下。 那如果做得好的话,标签能发挥啥作用呢? 一:查询信息。这是最普遍的场景了。大量的一线工作人员会有需求,比如[详细]
-
几个好使常见的大数据分析模型
所属栏目:[大数据] 日期:2022-08-23 热度:159
互联网打工人来说,数据分析是一项必备技能!花了这么多钱,营销效果到底达到没有?什么样的功能才能真正戳中用户的痛点? 1. 事件分析 干啥的:研究某行为事件的发生对企业组织价值的影响以及影响程度。 怎么用:追踪或记录的用户行为或业务过程,如用户[详细]
-
为什么大热的数据可视化行业 我不提议轻易入行
所属栏目:[大数据] 日期:2022-08-23 热度:199
这两年互联网行业在 C 端市场上的增长已经不足以吸引大众和投资者的视线,B 端作为一个新的热点开始被追捧。 各种让人眼花缭乱的图例和技术应用解说,很容易让我们产生未来已经加速向我们走来的 幻觉,此时不抓紧时代的机遇投身数字化界面的设计,更待何时[详细]
-
MPP与Hadoop 两种主流大数据系统架构有什么差别
所属栏目:[大数据] 日期:2022-08-23 热度:64
同样都可以处理大规模数据的MPP数据库架构与Hadoop体系架构属于不同的技术体系,二者没有直接的相关性,却常常被放在一起进行比较。 1. 设计思路对比 两类系统运行的硬件架构是相同的,都是普通服务器组成的集群,但从资源管理角度来说,它们并行化软件实[详细]
-
大数据项目可能出错的几种方案
所属栏目:[大数据] 日期:2022-08-23 热度:71
大数据项目的低成功率是过去10年中一个持续存在的问题,与之类似的是:人工智能项目中也出现了相同类型的问题。虽然100%的成功率不是一个可以实现的目标,但用户可以进行一些调整以从数据投资中获得更多收益。 一个重要原因是缺乏数据集中化,这抑制了公司[详细]
-
详解元宇宙的七层产业链
所属栏目:[大数据] 日期:2022-06-27 热度:137
详解元宇宙的七层产业链: 1. 体验层映射现实世界的生活场景 元宇宙中的体验并不是打造简单的立体空间中的沉浸感,它可以把人类生活场景的方方面面映射进数字世界。当物理世界数字化之后,体验可以变得更加丰富。元宇宙可以帮助人类拓展边界,在虚拟世界中[详细]
-
具备可视化的数据不仅可以节流 还可以开源
所属栏目:[大数据] 日期:2022-06-27 热度:82
当数据团队在谈论具备可视化的数据和数据质量高的好处时,通常只会涉及数据不完整带来的负面影响:决策不力、收入流失,甚至降低客户的信任度。 Gartner预测,糟糕的数据质量使企业每年损失1290万美元,因此具备可视化的数据成为非常重要的选择。 如果公司[详细]
-
使用替代数据的五个隐性成本
所属栏目:[大数据] 日期:2022-06-27 热度:101
如今,替代数据源已嵌入到各个行业的企业业务流程中。根据Lowenstein Sandler 律师事务所2022 年的一项调查,92% 的投资机构(从对冲基金、私募股权到风险投资)都在以中等或很大的程度使用替代数据来为决策提供依据。受访者还预计,他们在 2022 年对替代数[详细]
-
2022年优秀预测分析工具和软件
所属栏目:[大数据] 日期:2022-06-27 热度:85
数据管理一直是企业面临的挑战。随着新的数据源不断涌入,使用合适的工具比以往任何时候都更为关键。预测分析工具和软件是完成这项任务的最佳解决方案。数据专家和商业管理者必须能够组织和清理数据,以启动这一进程。随后是对数据进行分析,并与同事分享[详细]
-
挖掘互联网开放数据可带来巨大商业价值
所属栏目:[大数据] 日期:2022-06-26 热度:155
星巴克的门店选址方法 20世纪80年代末,美国星巴克公司董事会名誉主席霍华德舒尔茨(Howard Schultz)曾经在西雅图总部组建地产团队,专门研究咖啡门店的选址。 他们除了有着专业的地产团队外,还有地理信息系统进行数据化分析,从而决定开店位置和营销方式[详细]
-
区块链为大数据分析提供机会
所属栏目:[大数据] 日期:2022-06-26 热度:52
大数据能够获得实践应用并被各行各业青睐,最重要的原因还是大数据分析得出的结论具有指导意义,能够为行业决策提供数据统计基[详细]
-
技术迷途者指南 我有问题 你有解吗
所属栏目:[大数据] 日期:2022-06-26 热度:113
在日常工作中,我们可能会遇到各种技术问题,比如运维、开发、框架、操作系统等领域,不同的技术人,碰到的难题也不尽相同。为了帮助大家更好的解决问题,51CTO技术交流群针对一些技术问题展开了深入的讨论交流。51CTO对其中精彩问答进行了整理,并通过文[详细]
-
Kafka 万亿级消息实践之资源组流量掉零故障排查分析
所属栏目:[大数据] 日期:2022-06-26 热度:121
Kafka 万亿级消息实践之资源组流量掉零故障排查分析: 一、Kafka 集群部署架构 为了让读者能与小编在后续的问题分析中有更好的共鸣,小编先与各位读者朋友对齐一下我们 Kafka 集群的部署架构及服务接入 Kafka 集群的流程。 为了避免超大集群我们按照业务维[详细]
-
用Elastic Block Store EBS 改善性能和数据可用性
所属栏目:[大数据] 日期:2022-06-26 热度:71
如今,许多数据库即服务(DBaaS)解决方案将计算层和存储层分开来,比如包括Amazon Aurora和Google BigQuery。由于数据存储和数据复制可以由现有服务来处理,DBaaS无需担心这种复杂性,这种解决方案很有吸引力。然而,这种设计的性能有时可能不如传统方式[详细]
-
大数据依赖不可取
所属栏目:[大数据] 日期:2022-06-26 热度:74
当下没有人会忽视大数据的重要作用。在生活的一切方面,大数据都潜在地发生着作用,特别是在管理层面,大数据已经成为重要的辅助工具。站在当前的角度来看,没有大数据,经济社会管理工作几乎就没有办法正常进行。 对传统统计数据的依靠和对现代大数据的依[详细]
-
用 Spark SQL 实行结构化数据处理
所属栏目:[大数据] 日期:2022-06-26 热度:143
Spark SQL 是 Spark 生态系统中处理结构化格式数据的模块。它在内部使用 Spark Core API 进行处理,但对用户的使用进行了抽象。这篇文章深入浅出地告诉你 Spark SQL 3.x 的新内容。 有了 Spark SQL,用户可以编写 SQL 风格的查询。这对于精通结构化查询语[详细]
-
数据驱动业务的18个有效战略
所属栏目:[大数据] 日期:2022-06-26 热度:169
你老想着数据驱动业务,但发现有力无处使,或者没人鸟你,我也有同样的经历,下面有18条策略锦囊,望你笑纳。 第一条 数据驱动业务中的数据广义来讲不仅仅是指存储在大数据平台的那堆数据(反映客观事实),也包括战略、组织、机制、流程、人性、认知、客户[详细]
-
实施合理的数据收集策略的关键性
所属栏目:[大数据] 日期:2022-06-26 热度:190
数据已经成为企业最宝贵的资产之一,而一些企业仍然否认它的重要性,但他们对接受它的犹豫正在消退。一项民意调查发现,36%的企业认为大数据对他们的成功至关重要。 然而,许多企业仍在努力制定持久的数据战略。最主要的一个问题是他们没有可靠的数据收集[详细]
-
大数据能为建筑能源管理做些啥
所属栏目:[大数据] 日期:2022-06-26 热度:135
近年来,对降低碳排放水平和提高能源效率的兴趣导致智能建筑技术呈指数级增长。 最重要的是,物联网扩大了互连设备和建筑管理系统的可能性,以实现更好的能源管理。然而,真正实现其潜力需要组织和分析楼宇自动化系统生成的大型数据集。 实时管理和维护大[详细]
-
为啥不能忽视建筑物中的数据解析
所属栏目:[大数据] 日期:2022-06-26 热度:61
想象一栋建筑,其中创新的管理系统不断提供有关内部情况的简单而有意义的信息。 这些数据可用于提高效率、开发更智能的设备维护协议、创建更健康的建筑环境,并最终让使用者更快乐。 现在,考虑一个没有用于监控其系统的分析的建筑物。设备出现故障,存在[详细]
-
数据迁移 在平台之间移动数据的优秀践行
所属栏目:[大数据] 日期:2022-06-26 热度:187
随着越来越多的数据从内部系统转移到访问外部 API 的应用程序,迁移数据的需求变得越来越重要。 数据迁移在不同的上下文中可能意味着不同的东西,但在实践中,当我们谈论数据迁移时,我们通常是在谈论将数据从一个平台或系统移动到另一个平台或系统。 人们[详细]
-
使用 FlatBuffers 提高反序列化功能
所属栏目:[大数据] 日期:2022-06-26 热度:170
最近一直在寻找一个性能和资源占用兼具的序列化和反序列化工具,大多组织都是采用的 JSON, JSON 可以做到数据的前后兼容,并且更容易让人理解和可视化,但 JSON 的性能相对更差,自身的元数据也会占用更多的存储空间。 根据官网介绍FlatBuffers是一个高效[详细]